MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		2 Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – October/November 2013	9702	41	
			Section A			
1	(a)		rk done in moving unit mass m infinity (to the point)		M1 A1	[2]
	(b)	(i)	gravitational potential energy = GMm / x energy = (6.67 × 10 ⁻¹¹ × 7.35 × 10 ²² × 4.5) / (1.74 × 10 ⁶) energy = 1.27 × 10 ⁷ J		M1 A0	[1]
		(ii)	$\frac{1}{1/2} \times 4.5 \times v^2 = 1.27 \times 10^7$		B1	
			$v = 2.4 \times 10^3 \mathrm{ms^{-1}}$		A1	[2]
	(c)	/ at	rth would attract the rock / potential at Earth('s surface) not zer Earth, potential due to Moon not zero cape speed would be lower	ro / <0	M1 A1	[2]
2	(a)	(i)	<i>N</i> : (total) number of <u>molecules</u>		B1	[1]
		(ii)	$< c^2 >:$ mean square speed/velocity		B1	[1]
	(b)	, (me	= $\frac{1}{3}Nm < c^2 > = NkT$ ean) kinetic energy = $\frac{1}{2}m < c^2 >$ ebra clear leading to $\frac{1}{2}m < c^2 > = (3/2)kT$		C1 A1	[2]
	(c)	(i)	eitherenergy required = $(3/2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times$ = 12.5 J (12J if 2 s.f.)orenergy = $(3/2) \times 8.31 \times 1.0$ = 12.5 J	10 ²³	C1 A1 (C1) (A1)	[2]
		(ii)	energy is needed to push back atmosphere/do wor atmosphere so total energy required is greater	k against	M1 A1	[2]
3	(a)	(i)	any two from 0.3(0) s, 0.9(0) s, 1.50 s (<i>allow 2.1 s etc</i> .)		B1	[1]
		(ii)	either $v = \omega x$ and $\omega = 2\pi/T$ $v = (2\pi/1.2) \times 1.5 \times 10^{-2}$ $= 0.079 \text{ m s}^{-1}$ or gradient drawn clearly at a correct position working clear to give (0.08 ± 0.01) m s^{-1}		C1 M1 A0 (C1) (M1) (A0)	[2]

	Pa	ge 3	Syllabus	Paper			
				Mark Scheme GCE A LEVEL – October/November 2013	9702	41	
	(b)	(i)	sket	etch: <u>curve</u> from (±1.5, 0) passing through (0, 25) reasonable shape (<i>curved with both intersections between</i>		M1	
			$y = 12.0 \rightarrow 13.0$				
		(ii)		ax. amplitude potential energy is total energy energy = 4.0 mJ		B1 B1	[2]
4	(a)	(i)	 (i) force proportional to product of (two) charges and inversely proportional to square of separation reference to point charges 				
		(ii)	F = 2 = 7	$2\times(1.6\times10^{-19})^2$ / $\{4\pi\times8.85\times10^{-12}\times(20\times10^{-6})^2\}$ 1.15 \times 10^{-18} N		C1 A1	[2]
	(b)	(i)		e per unit charge <i>ither</i> a stationary charge		M1	
				positive charge		A1	[2]
		(ii)		electric field is a vector quantity electric fields are in opposite directions charges repel			
				Any two of the above, 1 each		B2	[2]
				graph: line always between given lines crosses x-axis between 11.0 μ m and 12.3 μ m reasonable shape for curve		M1 A1 A1	[3]
5	(a)	(i)	field	shown as right to left		B1	[1]
		(ii)	lines	s are more spaced out at ends		B1	[1]
	(b)	Hall voltage depends on angle <i>either</i> between field and plane of probe <i>or</i> maximum when field normal to plane of probe				M1	
				vhen field parallel to plane of probe		A1	[2]
	(c)	(i)	of ch	uced) e.m.f. proportional to rate nange of (magnetic) flux (linkage) w rate of cutting of flux)		M1 A1	[2]
		(ii)	-	move coil towards/away from solenoid rotate coil vary current in solenoid			
				insert iron core into solenoid three sensible suggestions, 1 each)		B3	[3]

	Page 4	Mark Scheme Syllab	us Pap	Paper		
		GCE A LEVEL – October/November 2013 9702				
6	force i	due to magnetic field is constant s (always) normal to direction of motion	B1 A1	[3]		
	this fo	this force provides the centripetal force				
	(b) <i>mv² / l</i> hence	r = Bqv q / m = v / Br	M1 A0	[1]		
	(c) (i) q	$/m = (2.0 \times 10^7) / (2.5 \times 10^{-3} \times 4.5 \times 10^{-2})$ = 1.8 × 10 ¹¹ C kg ⁻¹	C1 A1	[2]		
	pa	ketch: curved path, constant radius, in direction towards bottom age Ingent to curved path on entering and on leaving the field	of M1 A1	[2]		
7	or con	if light passes through suitable film / cork dust etc. diffraction occurs and similar pattern observed icentric circles are evidence of diffraction raction is a wave property	M1 A1 (M1) (A1)	[2]		
	$\lambda = h/l$ hence (speci or (speed $\lambda = h/l$	d increases so) momentum increases b so λ decreases radii decrease fal case: wavelength decreases so radii decreases – scores 1/3) d increases so) energy increases $1/\sqrt{(2Em)}$ so λ decreases	M1 M1 A1 (B1) (M1) (A1)	[3]		
	(c) electro <i>either</i> ratio = =	hence radii decrease electron and proton have same (kinetic) energy either $E = p^2 / 2m$ or $p = \sqrt{(2Em)}$ ratio = $p_e / p_p = \sqrt{(m_e / m_p)}$ = $\sqrt{\{(9.1 \times 10^{-31}) / (1.67 \times 10^{-27})\}}$ = 2.3×10^{-2}				
8	()	y to separate nucleons (in a nucleus) ate to infinity	M1 A1	[2]		
	(b) (i) fis	ssion	B1	[1]		
	(ii) 1 .	U: near right-hand end of line	B1	[1]		
	2.	Mo: to right of peak, less than 1/3 distance from peak to U	B1	[1]		
	3.	La: $0.4 \rightarrow 0.6$ of distance from peak to U	B1	[1]		

	Pa		5	Mark Scheme	Syllabus	Paper	
	y			GCE A LEVEL – October/November 2013	9702	41	
		(iii)	1	right-hand side, mass = 235.922 u		C1	
		(111)	1.	mass change = 0.210 u		A1	[2]
			2.	energy = mc^2 = 0.210 × 1.66 × 10 ⁻²⁷ × (3.0 × 10 ⁸) ²		C1	
				$= 3.1374 \times 10^{-11} \text{ J}$		C1	
				= 196 MeV (<u>need 3 s.f.</u>) (use of 1 u = 934 MeV, allow 3/3; use of 1 u = 930 MeV, allow 2/3)	MeV or 932	A1	[3]
				(use of 1.67×10^{-27} not 1.66×10^{-27} scores max. 2/3)			
				Section B			
9	(a)	оре	erate	s on / takes signal from sensing device		B1	
		(so	that) it gives an voltage output		B1	[2]
	(b)			or and resistor in series between +4 V line and earth		M1	
				own clearly across <i>either</i> thermistor <i>or</i> resistor		A1	101
		Vol	_{JT} Sh	own clearly across thermistor		A1	[3]
	(c)	(c) e.g. remote switching					
				tching large current by means of a small current ating circuit from high voltage			
		,	swi	tching high voltage by means of a small voltage/current		50	
		(an	y two	o sensible suggestions, 1 each to max. 2)		B2	[2]
10	(a)			f ultrasound)	(1)	B1	
		-		ed by quartz / piezo-electric crystal d from boundaries (between media)	(1)	B1	
		reflected pulse detected by the ultrasound transmitter (1) signal processed and displayed				B1	
						B1	
		•		of reflected pulse gives information about the boundary	/ (1)	ы	
		time delay gives information about depth (1)					
		(four B marks plus any two from the four, max. 6)		B2	[6]		
	(b)	b) shorter wavelength				B1	
		sma	aller	structures resolved / detected (not more sharpness)		B1	[2]
	(c)	(i)		$I_0 e^{-\mu x}$		C1	
			rati	$p = exp(-23 \times 6.4 \times 10^{-2})$ = 0.23		C1 A1	[2]
				- 0.23		AI	[3]
		(ii)		r signal has passed through greater thickness of mediu		M1	
			SO	nas greater attenuation / greater absorption / smaller inte	ensity	A1	[2]

Page 6		;	Mark Scheme		Paper		
				GCE A LEVEL – October/November 2013	9702	41	
11	(a)	left	-hand	bit underlined		B1	[1]
	(b)			10, 1111, 1010, 1001 t scores 2, 4 correct scores 1)		A2	[2]
	(c)	-		t changes in detail of <i>V</i> between samplings ncy too low		M1 A1	[2]
12	(a)	-	gain	ithm provides a smaller number of amplifiers is series found by addition, (not multiplica sible suggestion)	ition)	B1	[1]
	(b)	(i)	optic	fibre		B1	[1]
		(ii)	atten	uation/dB = 10 lg(P_2/P_1) = 10 lg({6.5 × 10 ⁻³ }/{1.5 × 10 ⁻¹⁵ }) = 126		C1 C1	
			lengt	h = 126 / 1.8 = 70 km		A1	[3]